Electronic-structure study of an edge dislocation in Aluminum and the role of macroscopic deformations on its energetics
نویسندگان
چکیده
We employed a real-space formulation of orbital-free density functional theory using finiteelement basis to study the defect-core and energetics of an edge dislocation in Aluminum. Our study shows that the core-size of a perfect edge dislocation is around ten times the magnitude of the Burgers vector. This finding is contrary to the widely accepted notion that continuum descriptions of dislocation energetics are accurate beyond⇠ 1 3 Burgers vector from the dislocation line. Consistent with prior electronic-structure studies, we find that the perfect edge dislocation dissociates into two Shockley partials with a partial separation distance of 12.8 Å. Interestingly, our study revealed a significant influence of macroscopic deformations on the core-energy of Shockley partials. We show that this dependence of the core-energy on macroscopic deformations results in an additional force on dislocations, beyond the Peach-Koehler force, that is proportional to strain gradients. Further, we demonstrate that this force from core-effects can be significant and can play an important role in governing the dislocation behavior in regions of inhomogeneous deformations.
منابع مشابه
4 A ug 2 00 9 Role of the defect - core in energetics of vacancies
Electronic structure calculations at macroscopic scales are employed to investigate the crucial role of a defect-core in the energetics of vacancies in aluminum. We find that vacancy core-energy is significantly influenced by the state of deformation at the vacancy-core, especially volumetric strains. Insights from the core electronic structure and computed displacement fields show that this de...
متن کاملRole of macroscopic deformations in energetics of vacancies in aluminum.
Electronic structure calculations on million-atom samples are employed to investigate the effect of macroscopic deformations on energetics of vacancies in aluminum. We find that volumetric strain associated with a deformation largely governs the formation energies of monovacancies and divacancies. The calculations suggest that nucleation of these defects is increasingly favorable under volumetr...
متن کاملDISLOCATIONS STRUCTURE AND SCATTERING PHENOMENON IN CRYSTALLINE CELL SIZE OF 2024 AL ALLOY DEFORMED BY ONE PASS OF ECAP AT ROOM TEMPERATURE
Variation in microstructural features of 2024 aluminum alloy plastically deformed by equal channel angular pressing (ECAP) at room temperature, was investigated by X-Ray diffraction in this work. These include dislocation density dislocation characteristic and the cell size of crystalline domains. Dislocations contrast factor was calculated using elastic constants of the alloy such as C 11, C 2...
متن کاملA MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS
In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...
متن کاملInvestigation of electron correlation effects in armchair silicene nanoribbons
In this study, the electronic structure of armchair silicene nanoribbons (ASiNRs) is investigated for various widths using first-principle calculations and the framework of the density functional theory. Electronic structure of ASiNRs shows a direct band gap which is decreased with increasing the nanoribbon's width, showing an oscillatory behavior. The effective Coulomb interaction between loca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014